ALCF Early Science Program

ESP Kick-Off Workshop Project Plan Presentation

Direct Numerical Simulation of Autoignition in a Jet in a Cross-Flow

PI: Christos Frouzakis

Presenter: Paul Fischer

October 18-19, 2010

Project Overview

DNS of hydrogen autoignition of in a cross-flow geometry

- Lab-scale jet in a cross flow
- Detailed investigation of flow and mixing
 - parallels laboratory study in UK
- Study conditions leading to autoignition
- Important for intense mixing applications
 - Premixing ducts in lean premixed turbines
 - Mixing in reheat combustor

Scientific Field: Combustion

Codes: Nek5000

Numerical Code: Nek5000

http://nek5000.mcs.anl.gov (P. Fischer, J. Lottes, S. Kerkemeier)

- Spatial discretization based on the spectral element method (Patera 1984, Devile, Fischer, Mund 2002)
 - variational method similar to FEM using GL quadrature
 - domain partitioned into E quadrilateral/hexahedral elements of order N
 - converges exponentially fast with N for smooth solutions
 - efficient operators: memory $\sim O(EN^3)$, work $\sim O(EN^4)$
 - key kernel: small dense matrix-matrix products

Semi-implicit time advancement

- Pressure & diffusive terms treated implicitly
- Nonlinear convective terms treated explicitly
- 2nd/3rd order characteristics methods

Physical modules

- Convective and conjugate transfer, MHD, free-surface flows
- Low Mach number combustion plugin

2D basis function, N=10

$$\frac{\partial u}{\partial r}\Big|_{\xi_i,\xi_j} = \sum_{p=0}^{N} \frac{dh_p}{dr}\Big|_{\xi_i} u_{pj}$$

Parallelism and Existing Implementation

- MPI everywhere
- Domain decomposition
 - Recursive spectral bisection of element graph
- Communication through scalable gather-scatter kernel, GS
 - Topology discovery and setup in ~ .5 sec for 100 M points on 131K cores
- Multi-level preconditioning for solvers
 - p-multigrid for N' = N, N/2,...,1
 - AMG for parallel coarse grid problem ~ 5% of time
 - based on optimized GS

Scaling to P=262144 Cores

- Production combustion and reactor simulations on ALCF BG/P demonstrate scaling to P=131072 with n/P $^{\sim}$ 3000-6,000 and η $^{\sim}$.7
- Test problem with 7 billion points scales to P=262144 on Juelich BG/P with $\eta \sim .7$

Plugin for Direct Numerical Simulation (DNS) of low Mach number reactive flows

- Low-Mach number formulation (Rehm 1978, Majda 1985)
 - hydrodynamic system can be advanced at fluid time scale
- High-order fluid / thermochemistry splitting (Tomboulides et al.,1997)
 - optimal time integration techniques of the different subsystems
- Adaptive BDF timestepper for thermochemistry (CVODE)
 - efficient treatment of the non-linear coupled and stiff energy & species equations
 - Detailed chemical kinetics and transport properties
 - platform-tuned CHEMKIN compatible libraries
- Surface kinetics
 - conjugate heat transfer in the solid

Recent DNS

Autoignition of a hydrogen jet in a hot turbulent co-flow

- Cylindrical domain: D=16mm, h=55mm
- 300 million grid points
- 11 ms simulated time
- detailed H₂/O₂ mechanism (9 species / 21 rxns)
 and transport
- 12M CPUh on Interpid using 32k-64k cores

Spherical premixed flame propagation

- Spherical domain
- Locally refined grid (cubed sphere)
- ~670 million grid points
- 4M CPUh on Cray XT5 (Swiss National Supercomputing Center)

Library and Tool Dependencies

Tools

- High-performance dgemm optimized for small N
 - Currently using assembler written by IBM for double hummer
 - Nek data is quad-aligned (been using this trick for > 20 years)
- Scalable MPI
 - Need to issue ~100 mpi_comm_dups (AMG)
 - Other basic functionality, but fairly conservative in MPI usage
- VisIt (visualization)

Problem size and Anticipated Modifications for Blue Gene/Q

- Proposed problem size
 - 10 billion gridpoints, 100k timesteps
 - 400 μsec/gridpoint/timestep
 - Write throughput around 8 GB/s
 - I/O overhead 10%
 - O(120 million) Blue Gene/Q core hours
- Ensure bounded coarse-grid-solve times for ~ O(10⁶) cores
- Add support for hardware threading. Tune kernels including
 - Small dense matrix-matrix products [15% of time]
 - Chemical production rates and transport properties (SIMD and hardware threads) [30%]
- Experimental support for MPI/pThread model
 - Possibly use lightweight MPI proclet model of A. Wagner UBC

Plan for Next 6 Months Effort

- Help find and hire a project postdoc
 - computational scientist (CFD would be ideal)
- Investigating "large N" kernels that will realize higher computational intensity without undue CFL constraints
- Identify higher level kernels amenable to threading, e.g.,

```
grad_{rst} u = [ (I \times I \times D) (IxDxI) (DxIxI) ] u
where (I \times I \times D) u = sum_p D_{ip} u_{pjk}, etc.
```